Channel Prediction Techniques for a Multi-User MIMO System in Time-Varying Environments
نویسندگان
چکیده
Although multi-user multiple-input multiple-output (MIMO) systems provide high data rate transmission, they may suffer from interference. Block diagonalization and eigenbeam-space division multiplexing (E-SDM) can suppress interference. The transmitter needs to determine beamforming weights from channel state information (CSI) to use these techniques. However, MIMO channels change in time-varying environments during the time intervals between when transmission parameters are determined and actual MIMO transmission occurs. The outdated CSI causes interference and seriously degrades the quality of transmission. Channel prediction schemes have been developed to mitigate the effects of outdated CSI. We evaluated the accuracy of prediction of autoregressive (AR)-model-based prediction and Lagrange extrapolation in the presence of channel estimation error. We found that Lagrange extrapolation was easy to implement and that it provided performance comparable to that obtained with the AR-model-based technique. key words: channel prediction, multi-user MIMO system, block diagonalization, eigenbeam-space division multiplexing, time-varying environments, AR model, lagrange extrapolation
منابع مشابه
Behavior of a Multi-User MIMO System in Time-Varying Environments
We evaluated the behavior of a multi-user multiple-input multiple-output (MIMO) system in time-varying channels using measured data. A base station for downlink or broadcast transmission requires downlink channel state information (CSI), which is outdated in time-varying environments and we encounter degraded performance due to interference. One of the countermeasures against time-variant envir...
متن کاملTitle Performance Evaluation of a Multi-User MIMO System With Prediction of Time-Varying Indoor Channels
In this paper, the performance of a multi-user multiple-input multiple-output (MIMO) system in time-varying channels is evaluated using measurement data. We consider the multi-user MIMO system using a block diagonalization (BD) scheme and an eigenbeam-space division multiplexing (E-SDM) technique. In an ideal case, the BD scheme eliminates inter-user interference, and the E-SDM technique suppre...
متن کاملSemi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملMultiuser MIMO Downlink System Capacity Analysis In Wireless Communication for Time Varying Channel
Very few technologies have shown as much impact on the trajectory of evolution of wireless communication systems as multiple input multiple output (MIMO) systems. MIMO systems have already been employed in the existing 802.11n and 802.16e standards resulting in a huge leap in their achievable rates. A relatively recent idea of extending the benefits of MIMO systems to multi-user scenarios seems...
متن کاملPerformance Evaluation of Multiuser MIMO E-SDM Systems in Time-Varying Fading Environments
In this paper, the performance of multiuser MIMO ESDM systems in downlink transmission is evaluated in both uncorrelated and correlated time-varying fading environments. In the ideal case, using the block diagonalization scheme, inter-user interference can be completely eliminated at each user; and using the E-SDM technique for each user, optimal resource allocation can be achieved, and spatial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 97-B شماره
صفحات -
تاریخ انتشار 2014